${ }^{\text {a College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Organic }}$ Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, People's Republic of China
${ }^{\mathrm{b}}$ College of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's of Republic of China
*E-mail: dqshi@suda.edu.cn
Received March 18, 2008
DOI 10.1002/jhet. 103
Published online 26 May 2009 in Wiley InterScience (www.interscience.wiley.com).

A series of furo[3,4-e]pyrazolo[3,4-b]pyridine-5(7H)-one and indeno[2,1-e]pyrazolo[3,4-b]pyridine$5(1 H)$-one derivatives were synthesized via the three-component reaction of an aldehyde, 5 -aminopyrazole and either tetronic acid or 1,3-indanedione in ionic liquid without any catalyst. The structures of the products have been established by spectroscopic data and further confirmed by X-ray diffraction analysis. This method has the advantages of easier work-up, mild reaction conditions, high yields and an environmentally benign procedure.
J. Heterocyclic Chem., 46, 469 (2009).

INTRODUCTION

Multicomponent reactions (MCRs) are of increasing importance in organic and medical chemistry. The first MCR was described by Strecker in 1850 for the synthesis of amino acids [1]. However, in the past decade there have tremendous developments in three- and fourcomponent reactions and great efforts continue to be made to develop new MCRs [2]. Recently, there has been considerable interest in the use of ionic liquids as an environmentally benign reaction media because of its unique properties such as a wide liquid range, good solvating ability, tunable polarity, high-thermal stability, negligible vapor pressure, and ease of recyclablity [3]. Numerous chemical reactions, such as polymerization [4], hydrogenation [5], regioselective alkylation [6], Friedel-Crafts reactions [7], dimerization of alkenes [8], Diels-Alder reactions [9], Michael reactions [10], crosscoupling reactions [11], and some enzymic reactions [12] can be carried out in ionic liquids. Recently, some MCRs in ionic liquids have been reported [13].

Furopyridines is one of the "privileged medicinal scaffolds" which are used for the development of pharmaceutical agents of various applications. Compounds with this motif show a wide range of pharmacological activities such as antipsychotic [14], antiproliferative
[15], anticonvulsant [16], antianaphylactic [17], and anthelmintic [18] activities and can be used as calcium influx promoters [19], HIV-1 non-nucleoside reverse transcriptase inhibitors [20], and acetylcholinesterase inhibitors [21]. Pyrazole derivatives have been reported in the literature to be versatile building blocks for the synthesis of a wide range of the heterocyclic motifs, such as pyrazolopyridines [22], pyrazoloquinolines [23], and pyrzolopyrazoles [24]. The pyrazolo[3,4-b]pyridine system has interesting biological and pharmacological properties [25], such as adrenocorticotropic hormone (ACTH)-releasing factor antagonist activity [26].

Furopyridines and pyrazolo[3,4-b]pyridines have been reported widely in the literature. However, the synthesis of the compounds with both pyrazolo[3,4-b]pyridine and furo[3,4-b]pyridine motifs was neglected. We herein described a facile three-component reaction consisting of aldehyde 1, 5-amino-3-methyl-1-phenylpyrazole 2, and tetronic acid $\mathbf{3}$ in ionic liquid to synthesize the furo $[3,4-e]$ pyr-azolo[3,4-b]pyridine-5(7H)-one derivatives 4 (Scheme 1).

RESULTS AND DISCUSSION

Choosing an appropriate solvent is of crucial importance for the successful organic synthesis. To search for
Scheme 1

the optimal solvent, the three-component reaction of 4bromobenzaldehyde 1a, 5-amino-3-methyl-1-phenylpyrazole 2, and tetronic acid 3 was examined using ionic liquid such as $[\mathrm{bmim}] \mathrm{Br},[\mathrm{bmim}] \mathrm{BF}_{4},[\mathrm{pmim}] \mathrm{Br}$, water, glacial acetic acid, acetone, and ethanol as solvent, respectively, at different temperature for the synthesis of $\mathbf{4 a}$.

It can be seen from Table 1 that the reactions using ionic liquids as the solvent resulted in higher yields and shorter reaction times than those using organic solvents. Using water can also give the higher yields, but the reaction time is very long. On the basis of the obtained results, [bmim] Br was found to be superior in terms of cheap and yield. Under these optimized reaction conditions, a series of furo[3,4-e]pyrazolo[3,4-b]pyridine$5(7 H)$-one derivatives 4 were synthesized. The results are summarized in Table 2. The products were different from those in ethanol in the presences of l-proline [27]. The structures of the products may be affected by catalyst and solvents.
To expand the scope of the present method, the replacement of tetronic acid 3 with 1,3-indanedione 5 was examined. This is particularly attractive because compounds with indenopyridine motifs show a wide range of biological activities such as calcium antagonistic [28], antioxidant [29], antihistamine and antidepressant [30], and also act as phosphodiesterase inhibitors

Table 1
Solvent optimization for the synthesis of $\mathbf{4 a}$. ${ }^{\text {a }}$

Entry	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield $(\%)$
1	$[\mathrm{bmim}] \mathrm{Br}$	95	2	98
2	$[\mathrm{bmim}] \mathrm{BF}_{4}$	95	2	94
3	$[\mathrm{pmim}] \mathrm{Br}$	95	2	93
4	$\mathrm{H}_{2} \mathrm{O} / \mathrm{TEBAC}$	95	20	97
5	AcOH	95	4	92
6	$\mathrm{CH}_{3} \mathrm{COCH}$	Reflux	7	75
7	EtOH	Reflux	4	80

${ }^{\text {a }} 4$-Bromobenzaldehyde (2 mmol), 5-amino-3-methyl-1-phenylpyrazole $(2 \mathrm{mmol})$, tetronic acid $(2 \mathrm{mmol})$, and 2 mL solvent.

Table 2
The synthesis of $\mathbf{4}$ in [bmim]Br.

Entry	Ar	Time (h)	Yield (\%)
$\mathbf{4 a}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	2	98
$\mathbf{4 b}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	2	92
$\mathbf{4 c}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	2	88
$\mathbf{4 d}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	2	96
$\mathbf{4 e}$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3	87
$\mathbf{4 f}$	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	3	92
$\mathbf{4 g}$	$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	3	75
$\mathbf{4 h}$	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4	86
$\mathbf{4 i}$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3	95
$\mathbf{4 j}$	$3,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	2	91
$\mathbf{4 k}$	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	2	91
$\mathbf{4 l}$	$2-\mathrm{NO}_{2}-5-\mathrm{ClC}_{6} \mathrm{H}_{3}$	3	95
$\mathbf{4 m}$	$3,4-\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3}$	3	85
$\mathbf{4 n}$	Thiophen-2-yl	5	80
$\mathbf{4 0}$	Pyridin-3-yl	5	62
$\mathbf{4 p}$	Pyridin-4-yl	5	72

[31], NK-1, and dopamine receptor ligands [32]. To our delight, under the earlier-optimized conditions, the reactions proceeded smoothly. A series of indeno[2,1-e]pyra-zolo[3,4-b] pyridine-5($1 H$)-one derivatives 6 were obtained (Scheme 2) in excellent yields. The products were agreed with those in ethanol [27] or DMF [33]. The results are summarized in Table 3.

As shown in Tables 2 and 3, this method can be applied not only to the aromatic aldehydes with either electron-withdrawing groups (such as nitro and halide groups) or electron-donating groups (such as hydroxyl and alkoxyl groups), but also to heterocyclic aldehydes with excellent yields under same conditions. Therefore, we concluded that the electronic nature of the substituents has no significant effect on this reaction.

Apart from the mild conditions of the process and its excellent results, the simplicity of product isolation and the possibility to recycle the $[\mathrm{bmim}] \mathrm{Br}$ offer a significant advantage. Because [bmim] Br is miscible with water and the desired products are insoluble in water, the products can be directly separated by adding water into the synthetic system after the reaction is complete. The remaining [bmim]Br can then be recycled after removal of water under vacuum. Studies using 1a, 2, and 3 as model substrates showed that the recovered ionic liquid could be successively recycled in subsequent reactions without almost any decrease in its efficiency (Table 4). An overall process for the one-pot synthesis

Table 3
The synthesis of $\mathbf{6}$ in [bmim]Br.

Entry	Ar	Time $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
$\mathbf{6 a}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	4	91
$\mathbf{6 b}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	2	90
$\mathbf{6 c}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	2	94
$\mathbf{6 d}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	2	95
$\mathbf{6 e}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	2	96
$\mathbf{6 f}$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	2	91
$\mathbf{6 g}$	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	3	90
$\mathbf{6 h}$	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3	89
$\mathbf{6 i}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	3	88
$\mathbf{6 j}$	$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	4	92
$\mathbf{6 k}$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3	85
$\mathbf{6 l}$	$3,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3	92
$\mathbf{6 m}$	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3	90
$\mathbf{6 n}$	$3,4-\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3}$	3	93
$\mathbf{6 0}$	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3	87
$\mathbf{6 p}$	Thiophen-2-yl	4	80
$\mathbf{6 q}$	Pyridin-4-yl	5	79

of furo[3,4-e]pyrazolo [3,4-b]pyridine-5(7H)-one derivatives can be envisaged as shown in Figure 1.

All the products 4 and 6 were characterized by mp, IR, and ${ }^{1} \mathrm{H}$ NMR spectra as well as HRMS. The structure of 41 was further confirmed by X-ray diffraction analysis [34]. The molecular structure $\mathbf{4 1}$ is shown in Figure 2.

Although the detailed mechanism of the above reaction remains to be fully clarified the formation of furo[3,4-e]pyrazolo[3,4-b]pyridine-5(7H)-one derivatives 4 could be explained by a reaction sequence presented in Scheme 3. We proposed that the reaction proceeded via a reaction sequence of condensation, addition, cyclization, dehydration, and aromatization. First, the condensation of aldehyde $\mathbf{1}$ and tetronic acid $\mathbf{3}$ gave the intermediate product 7. The addition of 7 to 5 -amino-3-methyl-1-phenylpyrazole 2 then furnished the intermediate product 9 , which on intermolecular cyclization and dehydration gave rise to $\mathbf{1 1}$. In the last step, the intermediate product $\mathbf{1 1}$ aromatized to product 4.

Evidence supporting this proposed mechanism came from the observation that when $7 \mathbf{a}$ and $\mathbf{2}$ were treated under same conditions, the expected product $4 \mathbf{a}$ was obtained in a yield similar to that obtained in the onepot reaction (Scheme 4).

In conclusion, we have developed a simple threecomponent reaction of an aldehyde, 5-amino-3-methyl-

Table 4
Studies on the reuse of [bmim]Br in the preparation of $\mathbf{4 a}$.

Round	1	2	3	4	5	6
Yield (\%)	97	98	97	97	96	97

Figure 1. Reaction-isolation-recycle process for the one-pot synthesis of 4 in $[\mathrm{bmim}] \mathrm{Br}$.

1-phenylpyrazole and either tetronic acid or 1,3-indanedione for the synthesis of furo $3,4-e]$ pyrazolo $[3,4-b]$ pyri-dine-5(7H)-one and indeno[2,1-e]pyrazolo[3,4-b]pyri-dine- $5(1 H)$-one derivatives in ionic liquid without any catalyst. This method has the advantages of good yields, convenient procedure, and environmentally friendly reaction conditions.

EXPERIMENTAL

Melting points are uncorrected. Infrared spectra were recorded on a Tensor 27 spectrometer in KBr with absorption in $\mathrm{cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a

Figure 2. The structure of 41 showing 40% probability displacement ellipsoids.

Bruker DPX $400-\mathrm{MHz}$ or Inova $300-\mathrm{MHz}$ spectrometer as DMSO- d_{6} solution. J values are in hertz (Hz). Chemical shifts are expressed in δ downfield from internal tetramethylsilane. HRMS were obtained using TOF-MS instrument. X-ray crystallographic analysis was performed with a Smart-1000 CCD diffractometer.

General procedure for the synthesis of furo[3,4-e]pyra-zolo[3,4-b]pyridine-5(7H)-one derivatives 4 and indeno[2,1e]pyrazolo[3,4-b]pyridine-5(1H)-one derivatives 6 in ionic liquid. Aldehyde 1 (2 mmol), 5-amino-3-methyl-1-phenylpyrazole $2(2 \mathrm{mmol})$, tetronic acid 3 or 1,3-indanedione 5 (2 mmol) were added to a 10 mL round bottom flask containing 2 mL [bmim]Br. The mixture was then stirred at $95^{\circ} \mathrm{C}$ for given times. After completion of the reaction, the reaction mixture was added with 5 mL water. The precipitate was collected by suction and purified by recrystallization from EtOH to give products 4 or 6 . The filtrate was concentrated under reduced pressure and dried at $100^{\circ} \mathrm{C}$ to recover the ionic liquid for subsequent use.

4-(4-Bromophenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]-pyr-azolo[3,4-b]pyridine-5(7H)-one (4a). This compound was obtained as solid with $\mathrm{mp} 226-227^{\circ} \mathrm{C}$; IR (potassium bromide): $3058,2965,2929,1764,1578,1557,1505,1439,1386$, 1356, 1313, 1210, 1140, 1070, 1048, 1027, 1011, 847, 821, 798, 759, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.13$ (s, 3H, $\left.\mathrm{CH}_{3}\right), 5.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.55$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.62 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH). HRMS [Found: $m / z 421.0236\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2}$: M 421.0249].

3-Methyl-4-(4-methoxyphenyl)-1-phenyl-1H-furo[3,4-e] pyr-azolo[3,4-b]pyridine-5(7H)-one (4b). This compound was obtained as solid with $\mathrm{mp} 190-192^{\circ} \mathrm{C}$; IR (potassium bromide): 3046, 2971, 2924, 1765, 1608, 1579, 1561, 1509, 1458, $1445,1426,1384,1358,1309,1294,1259,1208,1176,1140$, 1071, 1048, 1036, 1019, 824, 797, 758, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 5.47 (s , $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: m / z $371.1255\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: M 371.1270].

4-(4-Fluorophenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]pyra-zolo[3,4-b]pyridine-5(7H)-one (4c). This compound was obtained as solid with $\mathrm{mp} 235-237^{\circ} \mathrm{C}$; IR (potassium bromide): 3070, 2929, 1756, 1597, 1578, 1513, 1490, 1449, 1437, 1422, 1392, 1360, 1315, 1221, 1167, 1137, 1068, 1042, 1028, 830, $798,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 5.49 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.39-7.45 (m, 3H, ArH), 7.59-7.67 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 359.1055\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{2}$: M 359.1070].

4-(4-Chlorophenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]pyra-zolo[3,4-b]pyridine-5(7H)-one (4d). This compound was obtained as solid with $\mathrm{mp} 223-225^{\circ} \mathrm{C}$; IR (potassium bromide): 3062, 2934, 1763, 1598, 1580, 1562, 1505, 1488, 1459, $1442,1421,1386,1358,1313,1269,1211,1144,1124,1089$, $1071,1048,1027,1015,915,848,825,799,760,723 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.39-7.43 (m, 1H, ArH), 7.59-7.67 (m, 6H, ArH), 8.19 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 15.62,69.66$, 111.48 , 116.50, 121.74, 127.26, 128.64, 129.98, 130.74, $131.92,135.14,138.84,145.41,146.51,153.11,168.02$, 168.33. HRMS [Found: m/z $375.0768\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{14}{ }^{35} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{2}$: M 375.0775].

3-Methyl-4-(4-nitrophenyl)-1-phenyl-1H-furo[3,4-e]pyra-zolo[3,4-b]pyridine-5(7H)-one (4e). This compound was obtained as solid with $\mathrm{mp} 288-289^{\circ} \mathrm{C}$; IR (potassium bromide): 3068, 2929, 1763, 1580, 1517, 1439, 1388, 1350, 1314, 1293, 1213, 1142, 1108, 1073, 1050, 1022, 838, 802, 754, 709, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.90 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.20 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z \quad 386.1012\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: M 386.1015].

4-(4-Hydroxyphenyl)-3-methyl-1-phenyl-1H-furo[3,4-e] pyr-azolo[3,4-b]pyridine-5(7H)-one (4f). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (potassium bromide): $3312,1744,1614,1591,1573,1511,1490,1438,1388,1360$, 1317, 1276, 1214, 1173, 1146, 1082, 1051, 1026, 854, 826, 802, $758 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.19(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 15.88,69.34,111.13,115.27,116.72,121.66,121.96$, $127.08,129.90,132.04,138.96,145.61,148.82,153.18$, 159.48, 168.14, 168.45. HRMS [Found: $m / z 357.1092\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: M 357.1113].

4-(4-Dimethylaminophenyl)-3-methyl-1-phenyl-1H-furo [3,4-e] pyrazolo[3,4-b]pyridine-5(7H)-one(4g). This compound was obtained as solid with $\mathrm{mp} 246-248^{\circ} \mathrm{C}$; IR (potassium bromide): 2926, 1760, 1615, 1593, 1571, 1531, 1515, 1457, 1441, 1390, 1362, 1311, 1294, 1272, 1213, 1191, 1139, 1070, 1044, 1029,

Scheme 4

943, 850, 813, 796, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.23$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.04\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.86$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.37-7.45$ (m, 3H, ArH), 7.60 (t, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 16.31,69.25,110.81,111.29,116.57$, $118.08,121.78,121.82,127.12,129.94,132.13,132.18$, 139.05, 145.72, 149.45, 151.78, 153.34, 168.39, 168.65. HRMS [Found: $m / z 384.1585\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: M 384.15 86].

3-Methyl-4-(3-nitrophenyl)-1-phenyl-1H-furo[3,4-e]pyrazolo [3,4-b]pyridine-5(7H)-one (4h). This compound was obtained as solid with $\mathrm{mp} 259-261^{\circ} \mathrm{C}$; IR (potassium bromide): 3069, 2934, 1773, 1589, 1535, 1516, 1491, 1460, 1439, 1387, 1345, $1315,1212,1156,1125,1073,1048,1029,875,800,755$, 738, 713, 702, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $5.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.62$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.10$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 14.34,68.57,108.77,110.48,115.22,120.58$, 123.76, 126.07, 128.73, 132.23, 135.37, 135.39, 137.58, $143.49,143.99,146.68,151.99,166.68,167.10$. HRMS [Found: $m / z 386.1031\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{M}$ 386.1015].

4-(2,4-Dichlorophenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]pyrazolo [3,4-b]pyridine-5(7H)-one (4i). This compound was obtained as solid with $\mathrm{mp} 206-208^{\circ} \mathrm{C}$; IR (potassium bromide): $3064,2930,1762,1585,1506,1490,1475,1441,1470$, 1389, 1376, 1361, 1316, 1274, 1210, 1180, 1150, 1127, 1100, 1078, 1050, 1024, 893, 853, 821, 801, 757, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 5.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $7.60-7.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.19 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$). HRMS [Found: m/z $409.0385 \quad\left(\mathrm{M}^{+}\right) ;$Calcd for $\mathrm{C}_{21} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: M 409.0385].

4-(3,4-Dimethylphenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]pyr-azolo[3,4-b]pyridine-5(7H)-one (4j). This compound was obtained as solid with $\mathrm{mp} 231-233^{\circ} \mathrm{C}$; IR (potassium bromide): 2926, 2861, 1768, 1577, 1513, 1458, 1434, 1386, 1355, 1268, 1228, 1210, 1182, 1128, 1070, 1042, 1027, 852, 818, 808, 798, 758, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.11(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.28 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.32-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.20$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 15.62$, 19.98, 69.47, 111.34, 116.68, 121.82, 127.18, 127.47, 129.31, $129.56,129.95,130.93,136.33,138.43,138.97$, 145.61, 148.48, 153.17, 168.11, 168.31. HRMS [Found: m/z 369.1480 $\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: M 369.1477].

3-Methyl-4-(3,4-dimethoxyphenyl)-1-phenyl-1H-furo[3,4-e]pyr-azolo[3,4-b]pyridine-5(7H)-one (4k). This compound was obtained as solid with $\mathrm{mp} 203-205^{\circ} \mathrm{C}$; IR (potassium bromide): $3059,3018,2930,1768,1589,1570,1512,1460,1438$, $1412,1355,1325,1309,1259,1234,1203,1174,1130,1070$, 1045, 1027, 843, 795, 761, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 2.19 (s, 3H, CH3), 3.79 (s, 3H, CH3O), 3.88 (s, 3H, CH3O), 5.47 (s, 2H, CH 2), 7.10-7.17 (m, 2H, ArH), $7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 8.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$) ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 20.44, 60.97, 74.11, 116.36, 119.99, 121.51, 126.54, 127.86,
128.63, 131.88, 134.65, 134.73, 143.71, 150.39, 153.01, 153.34, 155.29, 157.96, 172.81, 173.03. HRMS [Found: m / z $401.1386\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: M 401.1376].

4-(2-Chloro-5-nitrophenyl)-3-methyl-1-phenyl-1H-furo[3,4-e]pyrazolo[3,4-b]pyridine-5(7H)-one (4l). This compound was obtained as solid with $\mathrm{mp} 253-255^{\circ} \mathrm{C}$; IR (potassium bromide): 3081, 1771, 1587, 1568, 1527, 1507, 1459, 1437, 1422, 1370, 1338, 1325, 1214, 1152, 1124, 1108, 1082, 1054, 1025, 947, 867, 853, 820, 757, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.64(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{ArH}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.45(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 420.0621\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{13}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{4}$: M 420.0625].

3-Methyl-4-(3,4-methylinenedioxophenyl)-1-phenyl-1H-furo[3, 4-e]pyrazolo[3,4-b]pyridine-5(7H)-one (4m). This compound was obtained as solid with $\mathrm{mp} 248-249^{\circ} \mathrm{C}$; IR (potassium bromide): 3070, 2903, 1764, 1577, 1508, 1490, 1445, 1387, 1364, 1341, 1313, 1240, 1207, 1166, 1119, 1071, 1051, 1031, 924, $796,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 5.47 (s, 2H, CH 2), 6.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 7.04 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 15.67, 69.45, 102.22, 108.51, 110.70, 111.51, 116.80, 121.71, 124.38, 125.22, 127.15, 129.92, 138.93, 145.56, 147.48, 147.82, 149.03, 153.19, 168.02, 168.27. HRMS [Found: m / z $385.1065\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: M 385.1063].

3-Methyl-4-(thiophen-2-yl)-1-phenyl-1H-furo[3,4-e]pyrazolo[3, 4-blpyridine-5(7H)-one (4n). This compound was obtained as solid with $\mathrm{mp} 248-250^{\circ} \mathrm{C}$; IR (potassium bromide): 3098, 1761, 1579, 1541, 1515, 1490, 1438, 1384, 1360, 1340, 1311, 1266, 1225, 1201, 1181, 1131, 1116, 1076, 1050, 1028, 852, 817, 794, 762, 732, 716, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 2.25 (s, 3H, CH3), 5.48 (s, 2H, CH2), $7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.40-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.97 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.18 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 19.95,74.20,117.01,122.03$, $126.62,132.01,132.56,134.64,135.02,135.44,136.22$, $143.56,145.58,150.10,157.81,172.63,172.70$. HRMS [Found: $m / z 347.0745\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{M}$ 347.0728].

3-Methyl-4-(pyridin-3-yl)-1-phenyl-1H-furo[3,4-e]pyrazolo[3, 4-blpyridine $\mathbf{5}(\mathbf{7 H})$-one (4o). This compound was obtained as solid with mp 223-225 ${ }^{\circ} \mathrm{C}$; IR (potassium bromide): 3032, 2971, 2947, 1753, 1593, 1579, 1510, 1487, 1440, 1421, 1389, 1357, 1336, 1312, 1293, 1269, 1213, 1194, 1146, 1125, 1071, 1050, 1026, 908, 848, 813, 795, 760, 717, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.60-7.65$ (m, 3H, ArH), 8.08 (dd, $J_{1}=1.5$ $\left.\mathrm{Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 20.39$, 74.46, 116.48, 121.39, 126.52, 128.22, 132.00, 132.72, 134.66, 142.47, 155.85, 157.87, 172.67, 173.11. HRMS [Found: m/z $342.1136\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: M 342.1117].

3-Methyl-4-(pyridin-4-yl)-1-phenyl-1H-furo[3,4-e]pyrazolo[3, 4-blpyridine $\mathbf{5}(\mathbf{7 H})$-one (4 p). This compound was obtained as solid with $\mathrm{mp} 223-225^{\circ} \mathrm{C}$; IR (potassium bromide): 3032, 2976, 2939, 1769, 1583, 1543, 1510, 1491, 1438, 1419, 1388, $1361,1340,1314,1273,1212,1178,1148,1126,1072,1051$,

1029, 989, 812, 797, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.11$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.60-7.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $8.80(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: m / z $342.1099\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: M 342.1117].

3-Methyl-1-phenyl-4-p-tolylindeno[2,1-e]pyrazolo[3,4-b]pyr-idine-5(1H)-one (6a). This compound was obtained as solid with $\mathrm{mp} 219-221^{\circ} \mathrm{C}$ (Lit. [32] $217-218^{\circ} \mathrm{C}$); IR (potassium bromide): $3028,2916,1712,1592,1572,1555,1498,1461,1437$, $1383,1326,1310,1278,1246,1198,1178,1159,1119,1083$, 1022, 995, 869, 767, 726, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.41-7.47 (m, 3H, ArH), 7.60-7.67 (m, 4H, ArH), 7.77 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.29$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 401.1533\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$: M 401.1528].

4-(4-Methoxyphenyl)-3-methyl-1-phenylindeno[2,1-e]pyr-azolo[3,4-b]pyridine-5(1H)-one (6b). This compound was obtained as solid with $\mathrm{mp} 222-224^{\circ} \mathrm{C}$ (Lit. [32] 224-225 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 2995, 2932, 2834, 1710, 1608, 1560, $1511,1463,1439,1384,1327,1311,1292,1246,1201,1178$, 1152, 1122, 1035, 996, 952, 834, 787, 770, 757, 727, 690 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.57-7.65(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: m / z $417.1474\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: M 417.1477].

4-(4-Fluorophenyl)-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one (6c). This compound was obtained as solid with $\mathrm{mp} 256-258^{\circ} \mathrm{C}$ (Lit. [32] $255-257^{\circ} \mathrm{C}$); IR (potassium bromide): $3068,3019,1715,1605,1596,1561,1509$, $1462,1437,1383,1324,1209,1248,1226,1201,1160,1121$, 1096, 1085, 1015, 995, 911, 872, 839, 803, 763, 730, 697 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.37-7.44$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 7.57-7.64(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.28(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 405.1276\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}: \mathrm{M} 405.1277$].

4-(4-Chlorophenyl)-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one (6d). This compound was obtained as solid with $\mathrm{mp} 265-267^{\circ} \mathrm{C}$ (Lit. [32] $269-270^{\circ} \mathrm{C}$); IR (potassium bromide): 3054, 2924, 1710, 1597, 1572, 1558, 1503, $1461,1438,1383,1325,1311,1294,1270,1246,1179,1153$, 1120, 1084, 1015, 996, 953, 867, 835, 767, $728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.56-7.65(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 421.0976\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{M} 421.0982$].

4-(4-Bromophenyl)-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one (6e). This compound was obtained as solid with $\mathrm{mp} 272-274^{\circ} \mathrm{C}$ (Lit. [32] 274-276 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 1712, 1595, 1570, 1503, 1460, 1438, 1383, $1326,1311,1293,1270,1246,1201,1180,1153,1120,1083$, 1012, 767, $728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.99$ (s, 3H, $\left.\mathrm{CH}_{3}\right), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.56-7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.73-7.77$ (m, 3H, ArH), 7.98 $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: m/z 465.0479 (\mathbf{M}^{+}); Calcd for $\mathrm{C}_{26} \mathrm{H}_{16}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{M} 465.0477$].

3-Methyl-4-(4-nitrophenyl)-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one (6f). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [26] 318-319 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 3065, 1709, 1592, 1566, 1510, 1503, 1462, 1439, $1384,1347,1325,1311,1290,1246,1201,1180,1154,1121$, $1084,1016,997,949,865,838,768,752,729,719,703,691$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.44(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61-7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.78(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.03$ (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 8.42(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 432.1220\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: M 432.1222].

4-(4-Hydroxyphenyl)-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one ($6 \mathbf{g}$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [26] 316-318 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 3233, 3067, 3031, 1695, 1614, 1593, 1557, 1510, $1489,1456,1436,1418,1383,1332,1323,1309,1293,1275$, 1247, 1232, 1201, 1176, 1157, 1121, 1083, 768, 756, 730 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.91(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.35-7.41$ (m, 3H, ArH), 7.53-7.62 (m, 4H, ArH), 7.72 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. HRMS [Found: $m / z 403.1317\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: M 403.1321].

3-Methyl-4-(3-nitrophenyl)-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one (6h). This compound was obtained as solid with $\mathrm{mp} 269-271^{\circ} \mathrm{C}$; IR (potassium bromide): 3086, 1710, $1605,1593,1564,1525,1503,1437,1417,1384,1349,1326$, $1311,1285,1247,1204,1188,1156,1123,1083,909,770,760$, 741, 728, 706, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.99(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.60-7.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $7.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 432.1237\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: M 432.1222].

4-(3-Chlorophenyl)-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3, 4-blpyridine-5(1H)-one (6i). This compound was obtained as solid with $\mathrm{mp} 243-245^{\circ} \mathrm{C}$; IR (potassium bromide): 3065, $1715,1593,1561,1503,1474,1461,1436,1382,1325,1309$, $1293,1276,1245,1203,1180,1153,1119,1024,998,955$, 907, 889, 766, 754, 726, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.52-7.67$ $(\mathrm{m}, 7 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.01 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 8.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2H, ArH). HRMS [Found: $m / z 421.0963\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{M} 421.0982$].

4-(4-Dimethylaminophenyl)2-3-methyl-1-phenylindeno[2,1-e]pyrazolo[3,4-b]pyridine-5(1H)-one (6j). This compound was obtained as solid with mp $242-244^{\circ} \mathrm{C}$ (Lit. [26] 241-242 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 2892, 1706, 1617, 1561, 1531, 1504, $1481,1462,1441,1384,1370,1325,1310,1292,1244,1233$, $1206,1194,1182,1168,1156,1125,1085,1059,1020,992$, 945, 815, 768, 729, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 2.14$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.05\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.40-7.43 (m, 3H, ArH), 7.56-7.64 (m, 4H, ArH), 7.74 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.29$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 430.1783\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}$: M 430.1794].

4-(2,4-Dichlorophenyl)-3-methyl-1-phenylindeno[2,1-e]pyr-azolo[3,4-b]pyridine-5(1H)-one (6k). This compound was
obtained as solid with $\mathrm{mp} 179-181^{\circ} \mathrm{C}$ (Lit. [26] 182- $184^{\circ} \mathrm{C}$); IR (potassium bromide): 3076, 2990, 1716, 1593, 1561, 1504, 1473, 1464, 1435, 1383, 1321, 1306, 1261, 1246, 1197, 1158, 1124, 1102, 1084, 1055, 995, 946, 872, 829, 791, 772, 760, $728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.43(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.60-7.68(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.78(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.27 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH). HRMS [Found: m / z $455.0585\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$: M 455.0592].
4-(3,4-Dimethylphenyl)-3-methyl-1-phenylindeno[2,1-e]pyr-azolo[3,4-b]pyridine-5(1H)-one (6l). This compound was obtained as solid with $\mathrm{mp} 200-202^{\circ} \mathrm{C}$; IR (potassium bromide): 3046, 2969, 2921, 1709, 1591, 1558, 1506, 1456, 1437, 1378, 1326, 1311, 1291, 1280, 1245, 1207, 1187, 1154, 1123, 1084, 1023, 807, 769, 758, 726, $691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $\delta 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.26 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.30-7.32$ (m, 2H, ArH), 7.42 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.56-7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.28(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$). HRMS [Found: $\mathrm{m} / \mathrm{z} 415.1686\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$: M 415.1685].

4-(3,4-Dimethoxyphenyl)-3-methyl-1-phenylindeno[2,1-e]pyr-azolo[3,4-b]pyridine-5(1H)-one ($6 m$). This compound was obtained as solid with $\mathrm{mp} 224-226^{\circ} \mathrm{C}$ (Lit. [26] $230-231^{\circ} \mathrm{C}$); IR (potassium bromide): 3054, 2959, 2938, 1703, 1606, 1550, 1510, 1488, 1463, 1444, 1381, 1355, 1328, 1309, 1287, 1275, 1262, $1247,1232,1195,1168,1158,1138,1123,1086,1022,801$, $763,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.09$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 7.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.21 (s , $1 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.58-7.65(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.29 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$). HRMS [Found: m / z $447.1599\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: M 447.1583].

4-(3,4-Methylienedioxyphenyl)-3-methyl-1-phenylindeno[2, 1-e]pyrazolo[3,4-b]pyridine-5(1H)-one (6n). This compound was obtained as solid with $\mathrm{mp} 220-222^{\circ} \mathrm{C}$ (Lit. [32] 223$224^{\circ} \mathrm{C}$); IR (potassium bromide): 3075, 3016, 2880, 1714, 1594, 1561, 1503, 1483, 1462, 1440, 1383, 1354, 1324, 1308, 1282, 1239, 1196, 1160, 1138, 1118, 1106, 1081, 1044, 1029, 996, 942, 918, 805, 768, 730, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.01(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.15(\mathrm{~s}, 1 \mathrm{H}$, ArH), 7.41 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.55-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, 7.72 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.93 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$). HRMS [Found: $m / z 431.1264$ $\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: M 431.1270].

4-(3,4-Dichlorophenyl)-3-methyl-1-phenylindeno[2,1-e]pyr-azolo[3,4-b]pyridine-5(1H)-one (6o). This compound was obtained as solid with $\mathrm{mp} 194-196^{\circ} \mathrm{C}$ (Lit. [26] 192- $194^{\circ} \mathrm{C}$); IR (potassium bromide): 3065, 2985, 2927, 1713, 1596, 1566, $1546,1503,1471,1436,1416,1376,1323,1307,1244,1202$, 1180, 1154, 1135, 1118, 1034, 998, 953, 895, 831, 775, 766, 751, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.60-7.66(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.77$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.95$ (s, 1H, ArH), 8.01 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.28 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH})$. HRMS [Found: $m / z 455.0586\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{26} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{M} 455.0592$].

3-Methyl-4-(thiophen-2-yl)-1-phenylindeno[2,1-e]pyrazolo[3, 4-b]pyridine-5(1H)-one ($\mathbf{6 p}$). This compound was obtained as solid with $\mathrm{mp} 231-233^{\circ} \mathrm{C}$ (Lit. [26] 232-233 ${ }^{\circ} \mathrm{C}$); IR (potas-
sium bromide): 3076, 2993, 1705, 1593, 1562, 1510, 1499, $1460,1434,1381,1336,1320,1306,1291,1247,1220,1192$, 1170, 1155, 1117, 1082, 1030, 991, 860, 806, 770, 752, 720 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $7.30(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.41-7.45 (m, 2H, ArH), 7.60-7.67 (m, 4H, ArH), 7.76 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.92(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.00 ($\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H, ArH). HRMS [Found: m/z $393.0917\left(\mathbf{M}^{+}\right)$; Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{M} 393.09$ 36].

3-Methyl-4-(pyridin-4-yl)-1-phenylindeno[2,1-e]pyrazolo-[3, 4-blpyridine-5(1H)-one ($\mathbf{6 q}$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (potassium bromide): 3021, 2986, 1707, 1590, 1568, 1541, 1504, 1462, 1437, 1412, 1385, 1327, 1312, 1249, 1203, 1181, 1157, 1123, 1085, 1068, 996, 950 , 831, 772, 763, 732, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.02$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61-7.67(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 8.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.79 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$). HRMS [Found: $m / z 388.1326\left(\mathrm{M}^{+}\right)$; Calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}: \mathrm{M} 388.1324\right]$.

The preparation of 4 a from 7a. 3-(4-Bromobenzylidene)-furan-2,4(3H,5H)-dione 7a (2 mmol) and 5-amino-3-methyl-1phenylpyrazole $2(2 \mathrm{mmol})$ were added to a 10 mL round flask containing $2 \mathrm{~mL}[\mathrm{bmim}] \mathrm{Br}$. The mixture was then stirred at $95^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction, the reaction mixture was added with 5 mL water. The precipitate was collected by suction and purified by recrystallization from ethanol to give $\mathbf{4 a}$ in 96% yield.

Acknowledgments. This work was supported by Foundation of Key Laboratory of Organic Synthesis of Jiangsu Province and Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province.

REFERENCES AND NOTES

[1] Strecker, A. Liebigs Ann Chem 1850, 75, 27.
[2] (a) Nair, V.; Vinod, A. U.; Rajesh, C. J Org Chem 2001, 66, 4427; (b) List, B.; Castello, C. Synlett 2001, 1687; (c) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestopalov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. I.; Evans, D. H. Org Lett 2002, 4, 423; (d) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org Lett 2002, 4, 3147; (e) Yuan, Y.; Li, X.; Ding, K. Org Lett 2002, 4, 3309; (f) Bagley, M. C.; Dale, J. W.; Bower, J. Chem Commun 2002, 1682; (g) Cheng, J. F.; Chen, M.; Arrhenius, T.; Nadzan, A. Tetrahedron Lett 2002, 43, 6293; (h) Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett 2002, 43, 6485; (i) Bora, U.; Saikia, A.; Boruah, R. C. Org Lett 2003, 5, 435; (j) Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Org Lett 2003, 5, 1205.
[3] (a) Welton, T. Chem Rev 1999, 99, 2071; (b) Wasserscheid, P.; Keim, W. Angew Chem Int Ed 2000, 39, 3772; (c) Earle, M. J.; Seddon, K. R. Pure Appl Chem 2000, 72, 1391; (d) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem Rev 2002, 102, 3667.
[4] Abdul-Sada, A. A. K.; Ambler, P. W.; Hodgson, P. K. G.; Seddon, K. R.; Stewart, N. J. World Pat. WO 9,521,871 (1995).
[5] (a) Fisher, T.; Sethi, A.; Welton, T.; Woolf, J. Tetrahedron Lett 1999, 40, 793; (b) Adams, C. J.; Earle, M. J.; Seddon, K. R. Chem Commun 1999, 1043; (c) Dyson, P. J.; Ellis, D. J.; Welton, T.; Parker, D. G. Chem Commun 1999, 25.
[6] (a) Badri, M.; Brunet, J. J.; Perron, R. Tetrahedron Lett 1992, 33, 4435; (b) Earle, M. J.; McCormac, P. B.; Seddon, K. R. Chem Commun 1998, 2245.
[7] (a) Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. J Org Chem 1986, 51, 480; (b) Seddon, K. R.; Adams, C. J.; Roberts, G. Chem Commun 1998, 2097.
[8] Ellis, B.; Keim, W.; Wasserscheid, P. Chem Commun 1999, 337.
[9] Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green Chem 1999, 1, 23.
[10] Corey, E. J.; Zhang, F. Y. Org Lett 2000, 2, 1097.
[11] (a) Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett 1996, 1091; (b) Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.; Seddon, K. R. Org Lett 1999, 1, 997; (c) Bohm, V. P. W.; Herrmann, W. A. Chem Eur J 2000, 6, 1017; (d) Song, C. E.; Roh, E. J. Chem Commun 2000, 837.
[12] Schoefer, S. H.; Kaftzik, N.; Kragl, U.; Wasserscheid, P. Chem Commun 2001, 425.
[13] (a) Dubreuil, J. F.; Bazureau, J. P. Tetrahedron 2003, 59, 6121; (b) Hakkou, H.; Eynde, J. J. V.; Hamelin, J.; Bazureau, J. P. Tetrahedron 2004, 60, 3745; (c) Legeay, J. C.; Eynde, J. C.; Eynde, J. J. V.; Bazureau, J. P. Tetrahedron 2005, 61, 12386.
[14] New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F., Jr.; VanderMaelen, C. P.; Cipollina, J. A. J Med Chem 1989, 32, 1147.
[15] Bukoski, R. D.; Bo, J.; Xue, H.; Bian, K. J Pharmacol Exp Ther 1993, 265, 30.
[16] Paronikyan, E. G.; Oganisyan, A. K.; Noravyan, A. S.; Paronikyan, R. G.; Dzhagatspanyan, I. A. Pharm Chem J 2002, 36, 413.
[17] Wagner, G.; Prantz, J. Pharmazie 1993, 48, 250.
[18] Jeschke, P.; Harder, A.; Etzel, W.; Gau, W.; Goehrt, A.; Benet-Buchholz, J.; Thielking, G. Bioorg Med Chem Lett 2005, 15, 2375.
[19] Gerster, P.; Riegger, C.; Fallert, M. Arzneim Forsch 1987, 37, 309.
[20] Wishka, D. G.; Graber, D. R.; Seest, E. P.; Dolak, L. A.; Han, F.; Watt, W.; Morris, J. J Org Chem 1998, 63, 7851.
[21] Marco, J. L.; Carreiras, M. C. Mini-Rev Med Chem 2003, 3, 578 .
[22] (a) Quiroga, J.; Alvarado, M.; Insuasty, B.; Moreno, R. J Heterocycl Chem 1999, 36, 1311; (b) Quiroga, J.; Hormaza, A.; Insuasty, B. J Heterocycl Chem 1998, 35, 409; (c) Quiroga, J.; Cruz, S.; Insuasty, B.; Abonia, R. J Heterocycl Chem 2001, 42, 5625.
[23] Quiroga, J.; Insuasty, B. J Heterocycl Chem 1998, 35, 575.
[24] Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Tetrahedron Lett 2001, 42, 3827.
[25] (a) Hardy, C. R. Adv Heterocycl Chem 1984, 36, 343; (b) Orth, R. E. J Pharm Sci 1968, 57, 537; (c) Elnagdi, M. H.; Elmoghayar, M. R. H.; Elgemeie, G. E. H. Adv Heterocyclic Chem 1987, 41, 319; (d) Elnagdi, M. H.; Elmoghayar, M. R. H.; Sadek, K. U. Adv Heterocyclic Chem 1990, 48, 223.
[26] Chen, Y. L. Int. Pat. WO 9,534,563 A1 (1995); Chem Abstr 1995, 124, 232447.
[27] Shi, C. L.; Shi, D. Q.; Sung, H. K.; Huang, Z. B.; Ji, S. J.; Ji, M. Tetrahedron 2008, 64, 2425.
[28] Safak, C.; Simsek, R.; Altas, Y.; Boydag, S.; Erol, K. Boll Chim Farm 1997, 136, 665.
[29] Bisenieks, E.; Uldrikis, J.; Kirule, I.; Tirzite, G.; Dubur, G. Khim Geterotsikl Soedin 1982, 1528.
[30] (a) Augstein, J.; Ham, A. L.; Leeming, P. R. J Med Chem 1972, 15, 466; (b) Kunstmann, R.; Lerch, U.; Gerhards, H.; Leven, M.; Schacht, U. J Med Chem 1984, 27, 432; (c) Kunstmann, R.; Fischer, G. J Med Chem 1984, 27, 1312.
[31] Rentzea, C.; Meyer, N.; Kast, J.; Plath, P.; Koenig, H.; Harreus, A.; Kardorff, U.; Gerber, M.; Walter, H. Ger Offen DE 4,301,426 A1 21 (1994); Chem Abstr 1994, 121, 133986.
[32] (a) De Wit, T.; van Emelen, K.; Maertens, F.; Hoornaert, G. J.; Compernolle, F. Tetrahedron Lett 2001, 42, 4919; (b) van Emelen, K.; De Wit, T.; Hoornaert, G. J.; Compernolle, F. Tetrahedron 2002, 58, 4225.
[33] Quiroga, J.; Cobo, D.; Insuasty, B.; Abonia, R.; Cruz, S.; Nogueras, M.; Cobo, J. J Heterocycl Chem 2008, 45, 155.
[34] The single-crystal growth was carried out in EtOH solutions at r.t. X-ray crystallographic analysis was performed with a Smart-1000 CCD diffractometer (graphite monochromator, MoK α radiation, $\lambda=0.71073 \AA$). Crystal data for 41: Empirical formula $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{4}$, yellow, crystal dimension $0.57 \times 0.52 \times 0.34 \mathrm{~mm}^{3}$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}, a=9.923(4) \AA, b=22.070(8) \AA$, $c=9.319(3) \AA, \alpha=90^{\circ}, \beta=112.894(3)^{\circ}, \gamma=90^{\circ} . V=$ 1880.1(12) $\AA^{3}, M_{\mathrm{r}}=419.81, Z=4, D_{\mathrm{c}}=1.483 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{MoK} \alpha)$ $=0.240 \mathrm{~mm}^{-1}, F(000)=864, S=1.054, R_{1}=0.0605, w R_{2}=$ 0.1478 .

